全国服务热线 15821971992
公司新闻

西门子总代理商|一级总代理商|低压代理商

发布时间: 2022-12-29 10:33 更新时间: 2023-10-26 04:00

 开关电源分为:隔离与非隔离两种形式,在这主要说一下隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规 反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。

  正激和反激电路各有其特点,在设计电路的过程中为达到优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。

  反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过 100 瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI 公司的TOP 芯片就可做300 瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。
 
  反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。

  变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ 型磁芯效果要比 EI 型的好。
 22.png  关于反激电源的占空比,原则上反激电源的大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI 公司推出的 TOP 系列芯片是可以工作在占空比大于0.5 的条件下。占空比由变压器原副边匝数比确定,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值)在一定电压范围内反射电压提高则工作,占空比增大,开关管损耗降低(RMS 降低)。反射电压降低则工作占空比减小,开关管损耗增大。当然这也是有前提条件,当占空比增大,则意味着输出二极管导通时间缩短,为保持输出稳定,更多的时候将由输出电容放电电流来保证,输出电容将承受更大的高频纹波电流冲刷,而使其发热加剧,这在许多条件下是不允许的。

  占空比增大,改变变压器匝数比,会使变压器漏感加大,使其整体性能变,当漏感能量大到一定程度,可充分抵消掉开关管大占空带来的低损耗,时就没有再增大占空比的意义了,甚至可能会因为漏感反峰值电压过高而击穿开关管。由于漏感大,可能使输出纹波,及其他一些电磁指标变差。当占空比小时,开关管通过电流有效值高,变压器初级电流有效值大,降低变换器效率,但可改善输出电容的工作条件,降低发热。如何确定变压器反射电压(即占空比)。

  关于反激电源的占空比(我关注反射电压,与占空比一致),占空比还与选择开关管的耐压有关,有一些早期的反激电源使用比较低耐压开关管,如600V或650V 作为交流 220V 输入电源的开关管,也许与当时生产工艺有关,高耐压管子,不易制造,或者低耐压管子有更合理的导通损耗及开关特性,像这种线路反射电压不能太高,否则为使开关管工作在安全范围内,吸收电路损耗的功率也是相当可观的。
 
  实践证明 600V 管子反射电压不要大于100V,650V 管子反射电压不要大于120V,把漏感尖峰电压值钳位在50V时管子还有50V的工作余量。现在由于MOS 管制造工艺水平的提高,一般反激电源都采用700V 或750V 甚至 800-900V 的开关管。像这种电路,抗过压的能力强一些开关变压器反射电压也可以做得比较高一些,大反射电压在150V 比较合适,能够获得较好的综合性能。
 
  PI公司的TOP 芯片推荐为135V采用瞬变电压抑制二极管钳位。但他们的评估板一般反射电压都要低于这个数值在110V左右。这两种类型各有优缺点:

类:缺点抗过压能力弱,占空比小,变压器初级脉冲电流大。优点:变压器漏感小,电磁辐射低,纹波指标高,开关管损耗小,转换效率不一定比第二类低。

第二类:缺点开关管损耗大一些,变压器漏感大一些,纹波差一些。优点:抗过压能力强一些,占空比大,变压器损耗低一些,效率高一些。

反激电源反射电压还有一个确定因素反激电源的反射电压还与一个参数有关,那就是输出电压,输出电压越低则 变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电路消耗功率越大,有可能使吸收回路功率器件失效(特别是采用瞬变电压抑制二极管的电路)。在设计低压输出小功率反激电源的优化过程中必须小心处理,处理方法有几个:
1、采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB 机顶盒等。

2、如果条件不允许加大磁芯,只能降低反射电压,减小占空比。降低反射电压可减小漏感但有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度。一般反射电压在110V 时比较合适。

3、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带。这些将影响变压器漏感性能,现实生产中可采用初级绕组包绕次级的绕法。或者次级用三重绝缘线绕制,取消初次级间的绝缘物,可以增强耦合,甚至可采用宽铜皮绕制。

  低压输出指小于或等于5V 的输出,像这一类小功率电源,功率输出大于 20W 输出可采用正激式,可获得佳性价比,当然这也不是决对的,与个人的习惯,应用的环境有关系。
 
  反激电源变压器磁芯在工作在单向磁化状态,所以磁路需要开气隙,类似于脉动直流电感器。部分磁路通过空气缝隙耦合。为什么开气隙的原理本人理解为:由于功率铁氧体也具有近似于矩形的工作特性曲线(磁滞回线),在工作特性曲线上Y 轴表示磁感应强度B,现在的生产工艺一般饱和点在400mT以上,一般此值在设计中取值应该在 200-300mT比较合适、X轴表示磁场强度H,此值与磁化电流强度成比例关系。磁路开气隙相当于把磁体磁滞回线向X轴向倾斜,在同样的磁感应强度下,可承受更大的磁化电流,则相当于磁心储存更多的能量,此能量在开关管截止时通过变压器次级泻放到负载电路,反激电源磁芯 开气隙有两个作用。其一是传递更多能量,其二防止磁芯进入饱和状态。
 
  反激电源的变压器工作在单向磁化状态,不仅要通过磁耦合传递能量,还担负电压变换输入输出隔离的多重作用。所以气隙的处理需要非常小心,气隙太大可使漏感变大,磁滞损耗增加,铁损、铜损增大,影响电源的整机性能。气隙太小有可能使变压器磁芯饱和,导致电源损坏所谓反激电源的连续与断续模式是指变压器的工作状态,在满载状态变压器工作于能量完全传递,或不完全传递的工作模式。一般要根据工作环境进行设计,常规反激电源应该工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力,但是这也有一些例外。
 10.png  需要特别指出:由于反激电源的特点也比较适合设计成高压电源,而高压电源变压器一般工作在断续模式,本人理解为由于高压电源输出需要采用高耐压的整流二极管。由于制造工艺特点,高反压二极管,反向恢复时间长,速度低,在电流连续状态,二极管是在有正向偏压时恢复,反向恢复时的能量损耗非常大,不利于变换器性能的提高,轻则降低转换效率,整流管严重发热,重则甚至烧毁整流管。由于在断续模式下,二极管是在零偏压情况下反向偏置,损耗可以降到一个比较低的水平。所以高压电源工作在断续模式,并且工作频率不能太高。

  还有一类反激式电源工作在临界状态,一般这类电源工作在调频模式,或调频调宽双模式,一些低成本的自激电源(RCC)常采用这种形式,为保证输出稳定,变压器工作频率随着,输出电流或输入电压而改变,接近满载时变压器始终保持在连续与断续之间,这种电源只适合于小功率输出,否则电磁兼容特性的处理会很让人头痛。

  反激开关电源变压器应工作在连续模式,那就要求比较大的绕组电感量,当然连续也是有一定程度的,过分追求连续是不现实的,有可能需要很大的磁芯,非常多的线圈匝数,同时伴随着大的漏感和分布电容,可能得不偿失。那么如何确定这个参数呢,通过多次实践,及分析同行的设计,在标称电压输入时,输出达到50%~60%变压器从断续,过渡到连续状态比较合适。或者在高输入电压状态时,满载输出时,变压器能够过渡到连续状态就可以了。

当前,电力电子技术已被广泛应用在生产与生活的各个领域,并发挥着越来越大的作用,这就使得人们对电力电子产品系统的故障诊断问题更加关注。由于电力电子产品的特殊性,一旦出现系统故障,如果得不到及时诊断与维修的话,可能会造成整个系统瘫痪,从而导致严重后果。因此,电力电子系统维修人员必须通过不断探索与创新,获得更加先进、可靠的系统故障诊断方法,进而不断增强自身诊断电力电子系统故障的能力。
  1、诊断电力电子系统故障的信息
  电力电子系统应用的范围比较广,涉及的领域也非常多,因此在诊断系统故障时,再加上电子器件过载力小、损耗快等原因,这就使得故障信息清晰呈现的时间也很短,因此我们必须及时监控其故障信息,如果发生故障后需要在线诊断的话,其他电力电子系统的功率就会增大很多从而导致新的故障问题的发生,因此常规的电力电子系统故障诊断方法已经不适用了。这就需要我们在发现电力电子系统故障之后,先借助相关的电子仪器对相关设备进行详细检验,如果这些电子设备状态均正常的话,应详细分析造成电力系统出现故障的可能情况,从而及早、全面了解相关信息,然后和维修人员一同对电子系统的故障问题进行详细分析,进而较为准确推测系统故障原因。
  2、诊断电力电子系统故障的位置
  为了准确诊断电力电子系统出现故障的原因与位置,我们可依照相关的科学性探究,详细分析引起故障的可能性原因,再使用诊断故障的合理方法,对引起故障的相关信息实施详细分析,从而尽快排除不可能导致系统出现故障的一些问题,进而逐步推断出造成电力电子系统出现故障问题的可能性原因及位置,然后确定系统故障发生的原因及具体位置,终借助恰当而科学的诊断方法,有效处理系统故障问题。从上面的论述我们可以了解到,要想准确判断电力电子系统出现故障的真正原因,就需要详细通过查证法及排除法不断缩小故障原因及故障位置的范围,然后依据对故障原因的推断结果类型,合理选择针对故障的方法。通常情况下,诊断造成电力电子系统故障原因的方法主要有:人工智能法、参数模型法、故障树法、波形分析法、谱分析法等,笔者将对以上几种电力电子系统故障诊断方法进行详细的分析。
  1 人工智能诊断法
  人工智能诊断法主要涵盖:人工神经网络、模式识别、专家系统等诊断方法。需要注意的是,采用模式识别法诊断电力电子系统的故障问题时,需要做好一些准备工作,也就是对系统故障可能出现的模式类型进行详细分析,只有这样才能将电力电子系统当前的工作状态合理归入到与之相符的故障模式中。完成模式识别诊断,需要做好2个步骤:1)准确而科学地提取故障的全部特征,并依照故障特征的性质对其恰当分类;2)准确诊断故障。在实际操作中,诊断人员应依照已经提取到的故障所有特征,借助已经构建好的数据模型适时诊断故障原因。专家系统诊断法,是利用计算机等智能设备模仿专家已经实践过的诊断经验,从而实现对电力电子系统故障的准确诊断。一个完整的专家诊断系统,是借助适时监控与测试等方式及时采集诊断电力电子系统故障所需要的各种数据,然后对这些赎金实施恰当处理后再传输到的诊断中心,借助专家诊断系统对这些数据进行详细分析,然后确定诊断结果,终再将诊断结果传输到用户手中。
  2 参数模型诊断法
  参数模型法数以解析模型诊断法的一种,其主要涵盖:参数估计及状态估计等方法。参数模型诊断法是借助对出现故障的电力电子产品的数据模型表达信息与可测信息进行详细的比较,获得残差,然后对残差实施恰当的处理及详细的分析,从而获得系统故障原因的诊断技术方法。在运用参数模型诊断法诊断电力电子系统故障时,应做好以下3点:1)通过对数据模型信息及可测信息进行对比获得残差,也就是获得电力电子产品系统故障的相关信息;2)检测故障模型,并通过对引起电力电子系统出现故障的可能性原因进行逻辑分析,终基本确定故障原因;3)详细分析电力电子系统故障的原因、大小及类型。
  3 故障树诊断法
  该诊断法的基本原理是:借助电力电子系统对系统中出现故障几率大的故障问题进行详细分析,并罗列出详细的逻辑分析图,这种层次清晰的逻辑图也可叫作故障树。由于故障与逻辑图之间有相应的练习,因此在系统出现故障时,诊断人员只需从逻辑图的上层开始逐层查找可能造成系统故障的原因,较为容易就能找到故障位置与原因。故障树法在诊断电力电子系统故障方面具有观察灵活、通用、实用等优点,但是也有易出错、工作量大等缺点,因此该诊断法的应用范围相对较小。
  4 波形分析诊断法
  波形分析法指的是借助对波形进行详细分析的形式来诊断电力电子系统出现故障的原因。该诊断方式与谱分析法相比,有着明显的区别,其主要是依据不同故障诊断中会形成不同的波形,来准确判断电力电子系统出现故障的原因的。在实际应用波形分析诊断法诊断电力电子系统的故障问题时,由于每一种故障都有其自身的一些特点,因此该诊断方法相对比较实用,并且对故障的正确判断率也较高。
  5 谱分析诊断法
  谱分析诊断法可简单分析电力电子系统的故障原因,假如波形分析方法诊断电力电子系统出现故障过程中有较大噪音发出的话,这种情况一般是因为波形不能尚且不能真实反映噪声的特征而发出的信号。针对这种情况,我们可用谱分析法对电力电子系统的故障进行诊断,该诊断法可高效提取信号中的噪声,并依照噪声的详细特征不断排除故障问题,从而较为快捷、准确地诊断出电力电子系统出现故障的原因与位置。通过对上文中几种电力电子系统诊断方法的分析,我们可以知道对诊断电力电子系统故障方法的研究属于一个新的领域研究,具有很强的性,并且技术要求非常高。经过一段时间的发展后,虽然积累了一定的经验并收获了一些成果,但是还有很多内容与因素需要诊断人员不断探索与研究,只有确保电力电子系统故障诊断方法不断进步与提升,才能满足快速更新换代的电力电子产品的高质量应用需求。
  总而言之,随着电子技术的迅猛发展,电子产品已经被广泛应用到生产与生活的各个领域,并发挥着重大积极作用这就使得人们对电子系统故障诊断方法十分关注,并提出了新的更高要求。因此,电力电子系统故障诊断工作者应全面了解人工智能法、参数模型法、故障树法、波形分析法、谱分析法等诊断法的优缺点及应用技巧,并不断探索与研究新的更有价值的电力电子系统故障诊断方法,只有这样才能满足人们提出的各种诊断需求,才能真正为电力产品的高效、安全应用保驾护航。


联系方式

  • 地址:上海杨浦 上海市松江区广富林路4855弄88号3楼
  • 邮编:200093
  • 电话:15821971992
  • 经理:聂聪
  • 手机:15821971992
  • 传真:021-33556143
  • QQ:2724917714
  • Email:2724917714@qq.com