6ES7215-1BG40-0XB0使用方法
1.当电机的旋转速度(频率)改变时,其输出转矩会怎样?
*1: 工频电源
由电网提供的动力电源(商用电源)
*2: 起动电流
当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和*大转矩要小于直接用工频电源驱动
电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
2. 变频器50Hz以上的应用情况
大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的。
如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上。
当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60Hz, 变频器的*大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速.
这时的转矩情况怎样呢?
因为P=wT (w:角速度, T:转矩). 因为P不变, w增加了, 所以转矩会相应减小。
我们还可以再换一个角度来看:
电机的定子电压 U = E + I*R (I为电流, R为电子电阻, E为感应电势)
可以看出, U,I不变时, E也不变.
而E = k*f*X, (k:常数, f: 频率, X:磁通), 所以当f由50-->60Hz时, X会相应减小
对于电机来说, T=K*I*X, (K:常数, I:电流, X:磁通), 因此转矩T会跟着磁通X减小而减小.
同时, 小于50Hz时, 由于I*R很小, 所以U/f=E/f不变时, 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变-->*大转矩不变)
结论: 当变频器输出频率从50Hz以上增加时, 电机的输出转矩会减小.
3. 其他和输出转矩有关的因素
发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。
载波频率: 一般变频器所标的额定电流都是以*高载波频率, *高环境温度下能保证持续输出的数值. 降低载波频率, 电机的电流不会受到影响。但元器件的发热会减小。
环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.
海拔高度: 海拔高度增加, 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了.
4.矢量控制是怎样改善电机的输出转矩能力的?
*1: 转矩提升
此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。
$ 改善电机低速输出转矩不足的技术
使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(*大约为额定转矩的150%)。
对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。
转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。
"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。
"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。
故障一
变频器充电起动电路故障,通用变频器一般为用压型变频器,采用交-直-交工作方式。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个起动电阻来限制充电电流。
充电完成后,控制电路通过继电器的触点或昌闸管将电阻短路。起动电路故障一般表现为起动电阻烧坏,变频器报警显示为直流线线电压故障。一般,变频器的设计时,为了减小变频器的体积而选择较小起动电阻,其值多为10-50Ω,功率为10-50W;当变频器的交流输入电源频繁接通,或者旁路触器的触点接触不良时,都会导致起动电阻烧坏。因此在替换电阻的同时,必须找出原因,如果故障是由输入侧电源频率开始引起的,必须消除这种现象才能将变频器投入使用,如果故障只由旁路触元件引起,则必须更换这些器件。
故障二
变频器无故障显示,却不能高速运行,经检查变频器参数设置正确,调速输入信号正常,经上电运行测试,变频器直流母线电压只有450V左右(正常应在580V-600V),再测输入侧,发现缺了一相。故障原因是输入侧的一个空气开关一相接触不良造成的。造成变频器输入缺相不报警,仍能在低频段工作,是因为多数变频器的母线电压下限为400V,只有当母线电压降至400V以下时,变频器才报告故障。
而当两相输入时,直流母线电压为380V×1.2=452V>400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值,新型的变频器都采用PWM控制技术,调压调频的工作在逆变桥完成,所以在低频段输入缺相时仍可以正常工作,但因输入电压,输出电压低,造成异步电动机转速低频率上不去。
故障三
变频器显示过流,出现这种显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果没有这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象。如果是,很可能是IPM模块出现故障,因为IPM模块内含有过压过流,欠压,过载、过热,缺相、短路等保护功能,而这些故障信号都是经模块控制引脚的输出Fn引脚传送到控制器的。微控制器接收到故障信息后,一方面封锁脉冲输出,另一方面将故障信息显示在面板上。应更换IPM模块。
故障四
变频器显示过压故障,变频器出现过压故障,一般是雷雨天气,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,这种情形,通常只需断开变频器电源1分钟左右再上电即可,另一种情况是变频器驱动大惯性负载,而出现过电压现象。这种情况下,一是将减速时间参数加长或增大制动电阻(制动单元);二是将变频器的停止方式设置为自由停车方式。
故障五
电机发热,变频器显示过载,对于已经投入运行的变频器,必须检查负载状况,对于新安装的变频器出现这种故障,很可能是V/F曲线设置不当或电机参数设置有问题,此时必须正确设置好各种参数,另外,电机在低频的工作时散热性能变差,也会出现这种情况,这时就需加装散热装置。
关键词:S5系统改造升级,S5-S7升级,S5改造,S5升级,S5改造升级
所属产品线:自动化系统/非标,自动化设备
产品型号: S5-90、S5-95、S5-100、S5-101、S5-102、S5-115、S5-135、S5-155 ( S5系列PLC)
品牌: SIEMENS,西门子,S5,S7
北京金鼎旺科技有限公司是致力于产业自动化技术和产品开发的高科技公司。 拥有一个西门子自动化与驱动技术和产品的团队,精通西门子自动化控制等各类产品和技术。公司从事西门子自动化、驱动、数控等系统的集成以及S5系统改造。
S5系列是西门子上世纪80年代产品,现已淘汰。大多数S5模块已经不再生产,备件价格昂贵、供货不稳定,设备的稳定运行碰到现实的威胁。
升级改造可分两种方案进行,一是局部改造,即保存控制柜及其外围器件,只拆除S5 PLC部分;第二种方案是全面升级,即根据设备工艺要求,对PLC、HMI、上位机等进行全面升级,实现控制设备的全面国产化。无论是局部改造还是全面升级,都将达到在保存原有系统功能的基础上,扩充系统的规模容量,提升系统性能。
我们成功的案例涉及到食品、饮料、制药、化工、冶金、汽配、轻工、纺织等领域,诸如罐装机、臭氧机、糖浆机、混比机、包装机、发泡机、除渣机、数控机床、脱模机、注模机、注塑机、挤出机等主机产品。 计数器指令包括增计数器、减计数器、增减计数器和高速计数器
增计数器
增计数指令(CTU)从当前计数值开始,在每一个(CU)输入状态从低到高时递增计数。当CXX的当前值大于等于预置值PV时,计数器位CXX置位。当复位端(R)接通或者执行复位指令后,计数器被复位。当它达到大值(32,767)后,计数器停止计数。
减计数器
减计数指令(CTD)从当前计数值开始,在每一个(CD)输入状态的低到高时递减计数。当CXX的当前值等于0时,计数器位CXX置位。当装载输入端(LD)接通时,计数器位被复位,并将计数器的当前值设为预置值PV。当计数值到0时,计数器停止计数,计数器位CXX接通。
增/减计数器
增/减计数指令(CTUD),在每一个增计数输入(CU)的低到高时增计数,在每一个减计数输入(CD)的低到高时减计数。计数器的当前值CXX保存当前计数值。在每一次计数器执行时,预置值PV与当前值作比较。当达到大值(32767)时,在增计数输入处的下一个上升沿导致当前计数值变为小值(--32768)。当达到小值(--32768)时,在减计数输入端的下一个上升沿导致当前计数值变为大值(32767)。当CXX的当前值大于等于预置值PV时,计数器位CXX置位。否则,计数器位关断。当复位端(R)接通或者执行复位指令后,计数器被复位。当达到预置值PV时,CTUD计数器停止计数。
PS:CXX代表的是计数器的名称,是常数范围时从C0到C25,由于每一个计数器只有一个当前值,所以不要多次定义同一个计数器。(具有相同标号的增计数器、增/减计数器、减计数器访问相同的当前值。)当使用复位指令复位计数器时,计数器位复位并且计数器当前值被清零。计数器标号既可以用来表示当前值,又可以用来表示计数器位。
减计数器应用
当I0.1断开时,减计数器C1的当前值从3变到0。I0.0的上升沿使C1的当前值递减。I0.1接通时装载预置值3。当计数器C1的当前值=0时,C1接通。
增减计数器实例应用
当 I0.0接通时,使用增计数,www.dzkfw.com.cn 版权所有 计数器数值增加,当 I0.1接通时,使用减计数,计数器数值减少,当I0.2接通时, I0.2将当前值复位为0,当当前值=4时,将增/减计数器C48接通,输出Q0.0.
高速计数器
一般来说,高速计数器被用作驱动鼓式计时器,该设备有一个安装了增量轴式编码器的轴,以恒定的速度转动。轴式编码器每圈提供一个确定的计数值和一个复位脉冲。来自轴式编码器的时钟和复位脉冲作为高速计数器的输入。高速计数器装入一组预置值中的个值,当前计数值小于当前预置值时,希望的输出有效。计数器设置成在当前值等于预置值和有复位时产生中断。随着每次当前计数值等于预置值的中断事件的出现,一个新的预置值被装入,并重新设置下一个输出状态。当出现复位中断事件时,设置个预置值和个输出状态,这个循环又重新开始。由于中断事件产生的速率远低于高速计数器的计数速率,用高速计数器可实现**控制,而与plc整个扫描周期的关系不大。采用中断的方法允许在简单的状态控制中用独立的中断程序装入一个新的预置值。(同样的,也可以在一个中断服务程序中,处理所有的中断事件。)
理解不同的高速计数器
对于操作模式相同的计数器,其计数功能是相同的。计数器共有四种基本类型:带有内部方向控制的单相计数器,带有外部方向控制的单相计数器,带有两个时钟输入的双相计数器和A/B相正交计数器。注意,并不是所有计数器都能使用每一种模式。您可以使用以下类型:无复位或启动输入,有复位无启动输入或既有启动又有复位输入。
- 当激活复位输入端时,计数器清除当前值并一直保持到复位端失效。
- 当激活启动输入端时,它允许计数器计数。当启动端失效时,计数器的当前值保持为常数,并且忽略时钟事件。
- 如果在启动输入端无效的同时,复位信号被激活,则忽略复位信号,当前值保持不变。如果在复位信号被激活的同时,启动输入端被激活,当前值被清除。
在使用高速计数器之前,应该用HDEF(高速计数器定义)指令为计数器选择一种计数模式。使用初次扫描存储器位SM0.1(该位仅在次扫描周期接通,之后断开)来调用一个包含HDEF指令的子程序。
对于高速计数器来说,我们可以使用指令向导来配置计数器。向导程序使用下列信息:计数器的类型和模式、计数器的预置值、计数器的初始值和计数的初始方向。要启动HSC指令向导,可以在命令菜单窗口中选择Tools >Instruction Wizard ,然后在向导窗口中选择HSC指令。对高速计数器编程,必须完成下列基本操作:定义计数器和模式、设置控制字节、设置初始值、 设置预置值、指定并使能中断服务程序、激活高速计数器。
高速计数器有12种工作模式如下图所示
工作模式
- 6ES7214-1HG40-0XB0使用方法 2023-10-26
- 6ES7214-1AG40-0XB0使用方法 2023-10-26
- 6ES7214-1BG40-0XB0使用方法 2023-10-26
- 6ES7212-1HE40-0XB0使用方法 2023-10-26
- 6ES7212-1AE40-0XB0使用方法 2023-10-26
- 6ES7212-1BE40-0XB0使用方法 2023-10-26
- 6ES7215-1HG40-0XB0操作使用 2023-10-26
- 6ES7215-1AG40-0XB0操作使用 2023-10-26
- 6ES7215-1BG40-0XB0操作使用 2023-10-26
- 6ES7214-1HG40-0XB0操作使用 2023-10-26
- 6ES7214-1AG40-0XB0操作使用 2023-10-26
- 6ES7214-1BG40-0XB0操作使用 2023-10-26
- 6ES7212-1HE40-0XB0操作使用 2023-10-26
- 6ES7214-1BG40-0XB0参数 2023-10-26
- 6ES7212-1HE40-0XB0参数 2023-10-26
联系方式
- 地址:上海杨浦 上海市松江区广富林路4855弄88号3楼
- 邮编:200093
- 电话:15821971992
- 经理:聂聪
- 手机:15821971992
- 传真:021-33556143
- QQ:2724917714
- Email:2724917714@qq.com