全国服务热线 15821971992

西门子模块授权代理商|一级总代理|大量现货

更新时间:2023-10-26 04:00:00
价格:请来电询价
品牌:西门子
型号:模块
产地:德国
联系电话:15821971992
联系手机: 15821971992
联系人:聂聪
让卖家联系我
详细介绍

 近年来,国内各大电网由于继电保护拒动、误动引起的大面积停电事故时有发生,给国民经济与人民生活带来极大危害。对此,防止继电保护不正确动作,提高继电保护的运行可靠性,具有十分重要的意义。 
    1、抓好继电保护的验收工作 
      继电保护调试完毕,严格自检、专业验收,然后提交验收单由厂部组织检修、运行、生产3个部门进行保护整组实验、开关合跳试验,合格并确认拆动的接线、元件、标志、压板已恢复正常,现场文明卫生清洁干净之后,在验收单上签字。保护定值或二次回路变更时,进行整定值或保护回路与有关注意事项的核对,并在更改簿上记录保护装置变动的内容、时间、更改负责人,运行班长签名。保护主设备的改造还要进行试运行或试运行试验,如:差动保护取用CT更换,就应作六角图实验合格,方可投运。 
    2、严格继电保护装置及其二次回路的巡检 
      巡视检查设备是及时发现隐患,避免事故的重要途径,也是发电厂值班人员的一项重要工作。除了交接班的检查外,班中安排一次较全面的详细检查。对继电保护巡视检查的内容有:保护压板、自动装置均按调度要求投入;开关、压板位置正确; 各回路接线正常,无松脱、发热现象及焦臭味存在;熔断器接触良好;继电器接点完好,带电的触点无大的抖动及烧损,线圈及附加电阻无过热;CT、PT回路分别无开路、短路;指示灯、运行监视灯指示正常;表计参数符合要求;光字牌、警铃、事故音响情况完好;微机保护打印机动作后,还应检查报告的时间及参数,当发现报告异常时,及时通知继保人员处理。 
    3、提高继电保护运行操作的准确性 
    (1) 运行人员在学习了保护原理及二次图纸后,应核对、熟悉现场二次回路端子、继电器、信号掉牌及压板。严格“两票”的执行,并履行保护安全措施票,按照继电保护运行规程操作。每次投入、退出,要严格按设备调度范围的划分,征得调度同意。为保证保护投退准确,在运行规程中编入各套保护的名称、压板、时限、保护所跳开关及压板使用说明。由于规定明确,执行严格,减少运行值班人员查阅保护图的时间,避免运行操作出差错。
    (2) 特殊情况下的保护操作,除了部分在规程中明确规定外, 运行人员主要是通过培训学习来掌握的。要求不能以停直流电源代替停保护;有关PT的检修,应通知继保人员对有压监视3YJ接点短接与方向元件短接;用旁路开关代线路时,各保护定值调到与所代线路定值相同;相位比较式母差保护在母联开关代线路时,必须进行CT端子切换。特别要注意启动联跳其它开关的保护,及时将出口压板退出。常见的有:100 MW发电机组单元式接线的高压厂变差动、重瓦联跳主机、主变开关保护;母线失灵跳主变、线路开关保护;线路过功率切机保护;主变零序一段跳母联开关保护;厂用备用分支过流跳各备用段保护等。 
    (3) 发现继电保护运行中有异常或存在缺陷时,除了加强监视外, 对能引起误动的保护退其出口压板,然后联系继保人员处理。如有下列异常情况,均应及时退出: 
    ① 母差保护 在发出“母差交流断线”、“母差直流电压消失”信号时;母差不平衡电流不为零时;无专用旁路母线的母联开关串代线路操作及恢复倒闸操作中。 
    ② 高频保护 当直流电源消失时;定期通道试验参数不符合要求时;装置故障或通道异常信号发出无法复归时;旁母代线路开关操作过程中。 
    ③ 距离保护 当采用的PT退出运行或三相电压回路断线时;正常情况下助磁电流过大、过小时;负荷电流超过保护允许电流相应段时。 
    ④ 微机保护 总告警灯亮,同时4个保护(高频、距离、零序、综重)之一告警灯亮时,退出相应保护;如果两个CPU故障,应退出该装置所有保护;告警插件所有信号灯不亮,如果电源指示灯熄灭,说明直流消失,应退出出口压板,在恢复直流电源后再投入;总告警灯及呼唤灯亮,且打印显示CPU×ERR信号,如CPU正常,说明保护与接口CPU间通讯回路异常,退出CPU巡检开关处理,若信号无法复归,说明CPU有致命缺陷,应退出保护出口压板并断开巡检开关处理。 
    ⑤ 瓦斯保护 在变压器运行中加油、滤油或换硅胶时;潜油泵或冷油器(散热器)放油检修后投入时;需要打开呼吸系统的放气门或放油塞子,或清理吸湿器时;有载调压开关油路上有人工作时。 2.jpg    ⑥ 重合闸 在线路开关事故跳闸次数超标时(一般110 kV少油开关允许5次,220 kV少油开关允许7次;LW系列110 kVSF6开关65次,220 kVSF6开关50次,否则,开关要大修);系统短路容量增加,断路器的开断能力满足不了一次重合要求时;无压检定的电压抽取装置故障或同期检定来自母线PT的二次电压不正常时;断路器的气压或油压降低到不允许重合闸运行的数值或已闭锁时。 
    4、搞好保护动作分析 
      保护动作跳闸后,严禁随即将掉牌信号复归,而应检查动作情况并判明原因,做好记录。在恢复送电前,才可将所有掉牌信号全部复归,并尽快恢复电气设备运行。事后做好保护动作分析记录及运行分析记录,内容包括:岗位分析、专业分析及评价、结论等。凡属不正确动作的保护装置,及时组织现场检查和分析处理,找出原因,提出防范措施,避免重复性事故的发生。 
    5、加强技术改造工作 
    (1) 针对直流系统中,直流电压脉动系数大,多次发生晶体管及微机保护等工作不正常的现象,将原硅整流装置改造为整流输出交流分量小、可靠性高的集成电路硅整流充电装置。针对雨季及潮湿天气经常发生直流失电现象,首先将其升压站户外端子箱中的易老化端子排更换为陶瓷端子,提高二次绝缘水平。其次,核对整改二次回路,使其控制、保护、信号、合闸及热工回路逐步分开。在开关室加装熔断器分路开关箱,便于直流失电的查找与处理,也避免直流失电时引起的保护误动作。 
    (2) 对缺陷多、超期服役且功能不满足电网要求的110 kV、220 kV线路保护由晶体管型、整流型更换选用CKF、CKJ集成电路及微机线路保护。220 kV母线保护也将相位比较式更换为多功能的集成型PMH-42/13母差保护,加速保护动作时间,从而快速切除故障,达到提高系统稳定的作用。 
    (3) 技术改造中,对保护进行重新选型、配置时,首先考虑的是满足可靠性、选择性、灵敏性及快速性,其次考虑运行维护、调试方便,且便于统一管理。优选经运行考验且可靠的保护,个别新保护可少量试运行,在取得经验后再推广运用。 
      220 kV线路2套保护优选不同原理和不同厂家的产品,取长补短。这就不致因一个厂研制、制造的2套保护在同一特殊原因时,同时误动或拒动。针对微机、集成电路型保护性能优越、优点突出,但抗外界干扰能力差的特点,交、直流回路选用铠装铅包电缆,两端屏蔽接地;装置接地线保证足够截面且可靠、完好;抗干扰电容按“反措”要求引接。 
    (4) 对现场二次回路老化,保护压板及继电器的接线标号头、电缆标示牌模糊不清及部分信号掉牌无标示现象,应重新标示,做到美观、准确、清楚。组织对二次回路全面检查,清除基建遗留遗弃的电缆寄生二次线,整理并绘制出符合实际的二次图纸供使用,杜绝回路错误或寄生回路引起的保护误动作。 
    (5) 将全厂所有水银接点瓦斯继电器更换成可靠的干簧接点瓦斯继电器。低电压电磁型继电器应更换成集成型静态继电器。对保护装置中不能保证自启动的逆变电源,要进行更换。机械防跳6 kV开关要加装防跳继电器等。

当电力系统发生故障或异常现象时,利用一些电气自动装置将故障部分从系统中迅速切除,或在发生异常现象时及时发出信号,以达到缩小故障范围,减小故障损失,保证系统安全运行的目的。
为保证继电器保护装置可靠地工作,保持随时待动的良好状态,它的基本要求是:动作值的误差要小;接点要可靠;返回时间要短;消耗功率要小。

5_294_1819412_798_643.jpg

  一、微机保护算法概述
    把经过数据采集系统量化的数字信号经过数字滤波处理后,通过数学运算、逻辑运算、并进行分析、判断,以决定是否发出跳闸命令或信号,以实现各种继电保护功能。这种对数据进行处理、分析、判断以实现保护功能的方法称为微机保护。
    二、常见微机保护算法介绍
    1. 算法
    微机保护装置中采用的算法分类:
    (1)直接由采样值经过某种运算,求出被测信号的实际值再与定值比较。例如,在电流、电压保护中,则直接求出电压、电流的有效值,与保护的整定值比较。
    (2)依据继电器的动作方程,将采样值代入动作方程,转换为运算式的判断。
    分析和评价各种不同的算法优劣的标准是精度和速度。
    2. 速度影响因素
    (1)算法所要求的采样点数。
    (2)算法的运算工作量。
    3. 算法的计算精度
    指用离散的采样点计算出的结果与信号实际值的逼近程度。
    4. 算法的数据窗
    一个算法采用故障后的多少采样点才能计算出正确的结果,这就是算法的数据窗。
算法所用的数据窗直接影响保护的动作速度。例如,全周傅氏算法需要的数据窗为一个周波(20ms),半周傅氏算法需要的数据窗为一个半周波(10ms)。半周波数据窗短,保护的动作速度快,但是它不能滤除偶次谐波和恒稳直流分量。
    一般地算法用的数据窗越长,计算精度越高,而保护动作相对较慢,反之,计算精度越低,但是保护的动作速度相对较快。
    尽量提高算法的计算速度,缩短响应时间,可以提高保护的动作速度。但是高精度与快速动作之间存在着矛盾。
    计算精度与有限字长有关,其误差表现为量化误差和舍入误差两个方面,为了减小量化误关基保护中通常采用的A/D芯片至少是12位的,而舍入误差则要增加字长。
不管哪一类算法,都是算出可表征被保护对象运行特点的物理量。
    5. 正弦函数的半周juedui值积分算法
    假设输入信号均是纯正弦信号,既不包括非周期分量也不含高频信号。这样利用正弦函数的一些特性,从采样值中计算出电压、电流的辐值、相位以及功率和测量阻抗值。
    正弦函数算法包括Zui大值算法、半周积分算法、一阶导数算法、二阶导数算法、采样值积算法(两采样值积算法、三采样值积算法)等。
    这些算法在微机保护发展初期大量采用,其特点:计算量小、数据窗短、精度不是很高,但信号必须为正弦信号。
    为了保证故障时参数计算的正确性,必须配备完善的数字滤波器,即数字滤波算法与参数计算相结合。
    (1)正弦函数的半周juedui值积分算法
    半周积分通过对正弦函数在半个工频周期内进行积分运算,由积分值来确定有关参数。
    特点:计算量小、速度快。
    适用:广泛应用在中低压保护。
    (2)算法描述
    该算法的依据是一个正弦信号在任意半周期内,其juedui值积分(求面积)为一常数S。
    (3)算法描述
    积分值S与积分起始点的初相角a无关,因为画有断面线的两块面积显然是相等的。


图 1
    6. 周期函数的傅立叶级数算法
    数学中,一个周期函数满足狄里赫利条件,则可以将这个周期函数分解一个级数。Zui为常用的级数是傅立叶级数。
    假定被采样信号是一个周期性时间函数,除基波外还含有不衰减的直流分量和各整数次谐波。设该周期信号为x(t),它可表示为支流分量、基波分量和各整倍数的谐波分量之和。
主要内容:
    (1)全周波傅氏算法
    全周波傅氏算法是用一个连续周期的采样值求出的信号幅值的方法。在微机保护中,输入的信号是经过数据采样系统转换为离散的数字信号的序列。
    (2)半周波傅氏算法
    半周波傅氏算法仅用半周波的数据计算信号的幅值和相角。
    半周波傅氏算法在故障后10ms即可进行计算,故使保护的动作速度减少了半个周期。
    缺点:半周波傅氏算法不能滤除恒定直流分量和偶次谐波分量,而故障后的信号中往往含有衰减的直流分量----半周波傅氏算法的计算误差较大。
    为改善计算精度,而又不增加计算的复杂程度,可在应用半周波傅氏算法之前,先做一次差分运算。这就是一阶差分后半周波半周傅氏算法。
    从滤波效果来看,全波傅氏算法不仅能完全滤除各次谐波分量和稳定的直流分量,且能较好地滤除线路分布电容引起的高频分量,对随机干扰信号的反应也较小,而对畸变波形中的基频分量可平稳和jingque地作出响应。
    半周波傅氏算法的滤波效果不如全波算法,它不能滤去直流分量和偶次谐波,适合于只含基波及奇次谐波的情况。两者都对按指数衰减的非周期分量呈现了很宽的连续频谐,因此傅氏算法在衰减的非周期分量的影响下,计算误差较大。
    当故障发生半周后,半波算法即可计算出真值,但精度差(数据窗只有半周);全波算法在故障发生一周后才能计算出真值,速度慢但精度较半周好。
    在保护装置中可采用变动数据窗的方法来协调响应速度和精度的关系。其做法是在启动元件之后,先调用半波傅氏算法程序。
    由于计算误差较大,为防止保护误动可将保护范围减小10%。若故障不在该保护范围内时,调用全波傅氏算法程序,这时保护范围复原。当故障在保护范围的0%~90%以内时,用半波算法计算很快就趋于真值,精度虽然不高,但足以正确判断是区内故障,当故障在保护范围的90%以外时,仍以全波傅氏算法的计算结果为准,保证精度。
    (3)线路阻抗的傅氏算法
    傅氏算法可以完全滤去整数次谐波,对非整数次谐波也有较好的滤波效果。因此,电压和电流采样值um、im经傅氏算法后,可认为取出了工频分量的实部和虚部。
    当要求保护动作速度时,可采用半周傅氏算法,滤波效果要差一些,jingque度也不如全周傅氏算法。
    考虑到傅氏算法对非周期分量的仰制能力不理想,为提高傅氏算法对阻抗测量的jingque度,可采用差分算法仰制,而且方法简单,效果也好。
    为防止频率偏差带来的计算误差,可采取采样频率自动跟踪措施。
    7. 输电线路R-L模型算法
    R-L算法是以输电线路的简化模型为基础的,该算法仅能计算阻抗,用于距离保护。由于忽略了输电线路分布电容的作用,由此带来一定的计算误差,特别是对于高频分量,分布电容的容抗较小,误差更大。
    算法是根据简化的R-L线路模型建立微分方程进而求解。当忽略线路的分布电容后,从故障点到保护安装处的线路段可用一个电阻和电感串联电路表示,如图所示。


图2
    优点:不需滤除非周期分量,算法的数据窗较短,不受频率变化的影响,可很好地克服过滤电阻的影响,因而在输电线路距离保护中得到广泛应用。
    缺点:但需要配合数字滤波器,仰制低频、高频分量。
    在微机保护中如何计算R1、L1值,有两个问题:一是t1、t2两个时刻如何选择;二是电流的微分如何求出。
    (1)短数据窗法
    (2)长数据窗法
    (3)积分法
    8. 移相算法
    差分算法可仰制输入信号中的非周期分量电流影响,差分可以代替R-L算法中的微分。但同时差分算法使输入信号中的正弦工频电流的幅值发生变化、相位发生移动。
    对输入信号中的正弦工频电流Imsin(w1t+01)来说,正弦工频电流的差分超前原来的电流的相角是90度—180度/N,可实现差分移相算法。
    当采样频率为600Hz时超前移相75度;
    1000Hz时超前移相81度;
    1200Hz时超前移相82.5度。
    当采样频率为600~1200Hz时,超前的角度与输电线路阻抗角十分接近,故差分运算可用来设定线路阻抗角。
    差分算法移相的角度不能调整,仅与差分的阶次、采样频率有关。所需数据窗时间短。
    9. 突变量电流算法
    设在tn、tn+kTs时刻对正弦工频电流Imsin(w1t+01)采样,延时kTs采样得到的电流i(n+kTs)超前电流i(n)的相角的kwTs,即2kPI/N。实际并未获得超前电流,而是用滞后时间采样获得这一超前电流,所以称时差移相运算。
    在实现时差移相运算时,电流幅值保持不变,仅起相位移动作用。不同时刻采样值可以直接移相wTs角度,间隔k个采样点时移相kwTs角度。
    当采样频率为600Hz时,N=12,可实现k=1移相30度;k=2移相60度;k=4移相120度。
    采样频率为1200Hz时,可实现k=2移相30度;k=4移相60度;k=8移相120度。
    易理解,在tn、tn-kTa时刻对正弦工频电流采样,得到的i(n-kTs)采样值滞后i(n)的相角是2kPI/N。
    时差移相运算的移相角度也是固定的,当然移相的角度不能是任意的。当移相的角度较大时,k值较大,时间窗相比长一些,不利于保护动作速度的提高。
    差分移相算法的数据窗时间只要一个采样间隔,但移相角度不能调整。如有需要,可以用短数据窗移相角度为任意值的算法。
    10. 选相元件算法
    常规的距离保护装置,为了反映各种不同的故障类型和相别,需要设置不同的阻抗测量元件,接入不同的交流电压和电流。这些阻抗元件都是并行工作的,它们同时在测量着各自分管的故障类型的阻抗,因此,在选相跳闸时,还要配合专门的选相元件。
    在用微机构成继点保护的功能时,为了能够实现选相跳闸,同时防止非故障相的影响,一般都要设置一个故障类型、故障相别的判别程序。
    故障选相判断的主要流程:
    (1)判断是接地短路还是相间短路。
    (2)如果是接地短路,先判断是否单相接地。
    (3)如果不是单相接地,则判断哪两相接地。
    (4)如果不是接地短路,则先判断是否三相短路。
    (5)如果不是三相短路,则判断是哪两相短路。


没有

联系方式

  • 地址:上海杨浦 上海市松江区广富林路4855弄88号3楼
  • 邮编:200093
  • 电话:15821971992
  • 经理:聂聪
  • 手机:15821971992
  • 传真:021-33556143
  • QQ:2724917714
  • Email:2724917714@qq.com