全国服务热线 15821971992
公司新闻

邯郸西门子电缆6XV1840-2AH10

发布时间: 2023-01-29 10:40 更新时间: 2023-10-26 04:00

 


提高电快速脉冲群抗扰能力的措施

电快速脉冲群抗扰是共模干扰,可以采用滤波、吸收或者隔离的方式进行抑制。大致总结为以下五种方法。

 

【一】RS485总线隔离

 

(1)保证设备及人身安全——高压的影响

RS485用于设备之间的通信,很多时候,研发人员根本不知道客户拿自己的设备与什么类型的设备通信,万一对方是一个利用几块钱的阻容降压原理将220V降压到12V,与电网完全没有隔离,测试、调试、使用就会非常危险,或者是高压设备绝缘损坏,RS485线上带高压,就会威慑设备和人身的安全。

 

(2)避免远端接受异常——电势差的影响

许多实际应用中,通信距离可达几千米,节点之间的距离很远。设计者常常直接将每个节点的参考地接于本地的大地,作为信号的返回地,看似正常可靠的做法,实际的大地并不是理想的“0”电位,大地也是导体,也存在阻抗。

 

当大的电流流过大地时,流过电流的大地两端也会存在电势差。例如下图1,由于AB较远,参考地之间并不是 0 电位,地线的阻抗也不会是 0,由于电流环路的作用,在A端的电压是Vs,在B端就变成了Vc+Vs。

▲ 图1. 电势差的影响

 

(3)避免数据异常,器件损坏——地环路的影响

既然节点之间的大地存在电势差,那直接用一根线将两个节点的地再连起来不就可以了?大错特错!这样做只能使情况更加严重,这根长长的导线会与大地形成一个极大的地环路!相信大家在学生时代就知道,一个闭合线圈在变化的磁场里面就会产生电流。

 

50Hz的交流电力线、大型电机等,都是交流磁场的来源,若总线靠近或经过这些地方,地环路就会产生电流高达数安培甚至上百安培。电流流过地环路产生的共模电压就会影响总线的正常通信,除了稳定的磁场来源,一些电力线的浪涌、雷击、高频噪声等瞬态干扰都有可能被这个巨型的“环形天线”拾取,并造成通信异常。

 

【二】增加铁氧体磁环吸收干扰


在设备入口端增加铁氧体磁环可有效吸收干扰,同时增加通信线在铁氧体磁环中的匝数可以增加干扰的吸收效果,如图 2所示,在待测设备RS-485接口附近增加铁氧体磁环。

▲ 图2. 通信线增加铁氧体磁环

 

【三】使用屏蔽双绞线


如图所示,在实际应用中,RS485通信线可以使用屏蔽双绞线,并且屏蔽层单点接大地,可以有效抑制电快速脉冲群骚扰耦合到通信线上。

▲ 图3.使用屏蔽双绞线

 

【四】增加RS-485总线对地TVS


当在A对大地、B对大地之间增加TVS管,耦合到RS485总线上的电快速脉冲群骚扰电压幅值较高时,干扰电压会被TVS钳位,达到保护RS485收发器的目的。

▲ 增加TVS进行过压保护

 

【五】RS-485总线串联磁珠


由于磁珠在高频时相当于电阻,会将高频能量转化为热能消耗掉。因此在RS485总线上串联磁珠,在电快速脉冲群信号耦合到RS485总线上时,电快速脉冲群骚扰的能量会被磁珠消耗掉,提高RS485总线的抗干扰能力。

写在前面:


 

UC3842内部结构图

引脚说明:

①脚:误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性

②脚:反馈电压输入端,此脚电压与误差放大器同相端的2.5V基准电压进行比较,产生误差电压,从而控制脉冲宽度

③脚:电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态

④脚:定时端,内部振荡器的工作频率由外接的阻容时间常数决定,

⑤脚:公共端

⑥脚:推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns驱动能力为

⑦脚:直流电源供电电端,具有欠、过压锁定功能,芯片功耗为15mW

⑧脚:5V基准电压输出端,具有50mA的负载能力

1、稳压环路原理

1)原理图


 

图1 电压反馈环路原理图

2)工作原理

  • 当输出 U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后 U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。

  • 当输出 U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。

反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。

2、短路保护电路

1)在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。

注:PWM电路即脉冲宽度变调电路除了可以监控功率电路的输出状态之外,同时还提供功率元件控制信号,因此广泛应用在高功率转换效率的switching 电源、马达Inverter、音响用D 极增幅器、DC-DC Converter、UPS等各种高功率电路。

2)短路保护电路通常有两种,图2是小功率短路保护电路。


 

图2 小功率短路保护电路

基本原理:当输出电路短路,输出电压消失,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。UC3842停止工作后①脚电位消失,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。当短路现象消失后,电路可以自动恢复成正常工作状态。

3)率短路保护电路


 

图3 率短路保护电路

基本原理:当输出短路,UC3842①脚电压上升,U1 ③脚电位高于②脚时,比较器翻转①脚输出高电位,给 C1充电,当C1两端电压超过⑤脚基准电压时 U1⑦脚输出低电位,UC3842①脚低于1V,UC3842 停止工作,输出电压为0V,周而复始,当短路消失后电路正常工作。R2、C1是充放电时间常数,阻值不对时短路保护不起作用。

4)限流、短路保护电路


 

图4 限流、短路保护电路

当输出电路短路或过流,变压器原边电流增大,R3 两端电压降增大,③脚电压升高,UC3842⑥脚输出占空比逐渐增大,③脚电压超过1V时,UC3842关闭无输出。

5)电流互感器取样电流的保护电路


 

图5 电流互感器取样电流的保护电路

输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842停止工作,周而复始,当短路或过载消失,电路自行恢复。

3、输出端限流保护


 

图6 输出端限流保护

上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。

4、输出过压保护电路的原理

输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用为普遍的过压保护电路有如下几种:

1)可控硅触发保护电路


 

图7 可控硅触保护电路

如图7所示,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR)的控制端得到触发电压,因此可控硅导通。Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。

-->可控硅是可控硅整流元件的简称(SCR),是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变成交流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。

2)输出限压保护电路


 

图8 输出限压保护电路

输出限压保护电路如图8所示,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低;稳压管不导通,UC3842③电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。

5、输入过欠压保护


 

图9 过压欠保护电路

AC输入和DC输入的开关电源的输入过欠压保护原理大致相同。保护电路的取样电压均来自输入滤波后的电压。取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。


概述

RS485总线具有结构简单、通信距离远、通信速度快、成本低等优点。广泛应用于工业通信、电力监控、仪器仪表等行业。由于工业控制环境恶劣,通信线路中会出现更多的干扰耦合,从而影响RS485总线的可靠性,甚至会损坏RS485收发器芯片。脉冲群干扰是一种常见的干扰。通常采用电快速脉冲群(EFT)免疫试验来模拟干扰,验证系统的可靠性。

 


脉冲群骚扰的来源

在工业控制环境中经常会出现雷电、短路、开关动作等具有电感负载的动作而产生的瞬时干扰,这些干扰是一些短暂的高能量的脉冲骚扰,具有脉冲成群出现、脉冲的上升时间比较短暂、脉冲的重复频率较高等特点。

 

这些干扰会耦合到RS485总线上,由于这些脉冲不是单个脉冲,而是一连串的脉冲,因此会在RS485总线上产生积累,使骚扰的电压幅值超过RS485收发器的噪声容限,引起通信错误。

 

同时由于这些脉冲骚扰的周期较短,每个脉冲的出现的间隔时间较短,当***个脉冲骚扰还未消失时,第二个脉冲就紧跟而来,对于RS485总线上的寄生电容和RS485收发器的结电容来说,在还没有放电完就又开始充电,并且通常寄生电容较小,较小的能量就可以达到较高的电压,容易损坏RS485收发器,影响RS485总线通信可靠性。

 


脉冲群骚扰产生原理

脉冲群骚扰源的电压大小取决于负载电路的电感、负载断开的速度等因素。以开关动作为例,由于开关打开瞬间动静触头之间的距离比较近,电路中的电感感应出来的反电动势足以将触头间的空气间隙击穿,电路开始导通,但这一放电过程的时间非常短暂,此时电路将产生一个前沿脉冲为ns级,宽度达到几十ns级,幅度几千伏以上的高压小脉冲。当上述脉冲结束后,电路开始重复电感性负载产生反电动势和通过开关动静触头间的空气间隙放电的过程。

 

这一过程将一直进行,直到贮存在电感性能负载中的能量足够低,再也产生不了上述放电过程为止。这些干扰会耦合到RS485总线上,形成较大的干扰,影响通信的可靠性。



联系方式

  • 地址:上海杨浦 上海市松江区广富林路4855弄88号3楼
  • 邮编:200093
  • 电话:15821971992
  • 经理:聂聪
  • 手机:15821971992
  • 传真:021-33556143
  • QQ:2724917714
  • Email:2724917714@qq.com