浔之漫智控技术(上海)有限公司
西门子PLC模块 , CPU模块 , DP通讯电缆 , 6GK交换机
西门子plc模块|驱动器总代理|2023

使用总线连接器进行组态

借助于 S7-300 的简易总线连接设计,可以灵活而方便地使用 ET 200M:

模块组件;
只需将模块安装到 DIN 导轨上,旋转并拧紧它们。

集成背板总线:
集成的背板总线;背板总线集成在模块上。模块通过总线连接器相连,总线连接器插在机壳的背面。

使用有源总线模块进行组装

有源总线模块允许在运行期间更换模块,没有任何影响:

省时的模块更换;
更换模块时运行不会中断,继续通过其余模块运行。插入新模块时,该模块会自动投入运行。对于 S7-400 主站,可用同样的方式来管理分布式模块和中央模块的插拔操作。在 CPU 中会产生相关中断。对于所有其它 DP 标准主站,信号通过 DP 诊断发送到主站。S7-300 主站不支持热插拔操作。

各种模块可用于组装 ET 200M,这些模块安装到专用 DIN 导轨上。

BM PS/IM 总线模块可容纳电源和 IM 153

总线模块 BM IM 153/IM 153 用于接受两个 IM 153-2 模块以实现冗余运行(** PROFIBUS)

BM 2x40 总线模块可容纳 2 个 I/O 模块,模块宽度为 40 mm

BM 1x80 总线模块可容纳固定 1 个 I/O 模块,模块宽度为 80 mm

为了取得指定螺纹长度,可使用防爆型隔板备件;可以将该隔板插在两个总线模块之间。

方便组装;
总线模块可在 DIN 导轨中转动、端对端排列并使用侧面连接器进行固定。然后,可将各模块插在总线模块中并用螺钉固定,以便它们与总线连接器接触。未使用插槽的连接器必须使用背板总线盖板保护起来。必须将总线模块盖插到*后一个总线模块的侧面。116.jpg

电源

对于 ET 200M,可使用 2 A、5 A 和 10 A 等特殊形式电源。

  代数形式 A = a +jb    
  复数的实部和虚部分别表示为: Re[A]=a   Im[A]=b 。
  图1 为复数在复平面的表示。  根据图1 得复数的三角形式:       两种表示法的关系:     或 图1  根据欧拉公式可将复数的三角形式转换为指数表示形式:
        
  指数形式有时改写为极坐标形式:
  注意:要熟练掌握复数的四种表示形式及相互转换关系,这对复数的运算非常重要。

动态电路
  含有动态元件电容和电感的电路称动态电路。由于动态元件是储能元件,其 VCR 是对时间变量 t 的微分和积分关系,因此动态电路的特点是:当电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。
  下面看一下电阻电路、电容电路和电感电路在换路时的表现。
  1)电阻电路图 1 (a)(b)  图1(a)所示的电阻电路在 t =0 时合上开关,电路中的参数发生了变化。电流 i 随时间的变化情况如图1(b)所示,显然电流从t<0时的稳定状态直接进入t>0 后的稳定状态。说明纯电阻电路在换路时没有过渡期。
  2)电容电路 图 2 (a)(b)   图2(a)所示的电容和电阻组成的电路在开关未动作前,电路处于稳定状态,电流 i 和电容电压满足:i=0,uC=0。  t=0 时合上开关,电容充电, 接通电源后很长时间,电容充电完毕,电路达到新的稳定状态,电流 i 和电容电压满足:i=0,uC=US 。图 2 (c)  电流 i 和电容电压uC 随时间的变化情况如图2(c)所示,显然从t<0 时的稳定状态不是直接进入t>0后新的稳定状态。说明含电容的电路在换路时需要一个过渡期。
  3)电感电路 图 3 (a)(b)   图3(a)所示的电感和电阻组成的电路在开关未动作前,电路处于稳定状态,电流i 和电感电压满足:i=0,uL=0。  t=0 时合上开关。接通电源很长时间后,电路达到新的稳定状态,电流 i 和电感电压满足:i=0,uL=US/R 。图 3 (c)   电流 i 和电感电压uL 随时间的变化情况如图3(c)所示,显然从t<0时的稳定状态不是直接进入t>0后新的稳定状态。说明含电感的电路在换路时需要一个过渡期。
从以上分析需要明确的是:
 1)换路是指电路结构、状态发生变化,即支路接入或断开或电路参数变化;
 2)含有动态元件的电路换路时存在过渡过程,过渡过程产生的原因是由于储能元件L、C ,在换路时能量发生变化,而能量的储存和释放需要一定的时间来完成,即:
    若 则 
 3)代替电路方向就是研究换路后动态电路中电压、电流随时间的变化过程。

7b6cefb2-1637-4fc9-a136-ff94a03febed_source.jpg

2. 动态电路的方程
   分析动态电路,首先要建立描述电路的方程。动态电路方程的建立包括两部分内容:一是应用基尔霍夫定律,二是应用电感和电容的微分或积分的基本特性关系式。下面通过例题给出详细的说明。图 4图5  设 RC 电路如图4 所示,根据 KVL 列出回路方程为:
  由于电容的 VCR 为: 
  从以上两式中消去电流得以电容电压为变量的电路方程: 
  若以电流为变量,则有:
  对以上方程求导得:
  设 RL 电路如图5 所示的,根据 KVL 列出回路方程为:
  由于电感的 VCR 为: 
  以上两式中消去电感电压得以电流为变量的电路方程:
  若以电感电压为变量,则有:
  对以上方程求导得:   对图6 所示的 RLC 电路,根据 KVL 和电容、电感的 VCR 可得方程为:         图6  整理以上各式得以电容电压为变量的二阶微分方程:
考察上述方程可得以下结论:
 (1)描述动态电路的电路方程为微分方程;
 (2)动态电路方程的阶数等于电路中动态元件的个数,一般而言,若电路中含有 n 个独立的动态元件,那么描述该电路的微分方程是 n 阶的,称为 n 阶电路;
 (3)描述动态电路的微分方程的一般形式为:
  描述一阶电路的方程是一阶线性微分方程 
  描述二阶电路的方程是二阶线性微分方程 
  高阶电路的方程是高阶微分方程:
   
  方程中的系数与动态电路的结构和元件参数有关。

3. 电路初始条件的确定
  求解微分方程时,解答中的常数需要根据初始条件来确定。由于电路中常以电容电压或电感电流作为变量,因此,相应的微分方程的初始条件为电容电压或电感电流的初始值。
  若把电路发生换路的时刻记为 t =0 时刻,换路前一瞬间记为0-,换路后一瞬间记为0+,则初始条件为t=0+时u ,i 及其各阶导数的值。
 (1)电容电压和电感电流的初始条件
     
  由于电容电压和电感电流是时间的连续函数(参见第一章),所以上两式中的积分项为零,从而有:
     对应于 
  以上式子称为换路定律,它表明:
  1) 换路瞬间,若电容电流保持为有限值,则电容电压(电荷)在换路前后保持不变,这是电荷守恒定律的体现。
  2)换路瞬间,若电感电压保持为有限值,则电感电流(磁链)在换路前后保持不变。这是磁链守恒的体现。
  需要明确的是:
  1)电容电流和电感电压为有限值是换路定律成立的条件。
  2)换路定律反映了能量不能跃变的事实。
 (2)电路初始值的确定
  根据换路定律可以由电路的uC(0-) 和iL(0-) 确定uC(0+)和iL(0+) 时刻的值 , 电路中其他电流和电压在 t=0+ 时刻的值可以通过 0+ 等效电路求得。求初始值的具体步骤是:
  1)由换路前 t=0-时刻的电路(一般为稳定状态)求uC (0-) 或 iL (0-) ;
  2)由换路定律得uC (0+) 和iL (0+) ;
  3)画 t=0+ 时刻的等效电路: 电容用电压源替代,电感用电流源替代(取 0+ 时刻值,方向与原假定的电容电压、电感电流方向相同);
  4)由 0+ 电路求所需各变量的 0+ 值。


发布时间:2023-10-26
展开全文
优质商家推荐 拨打电话