浔之漫智控技术(上海)有限公司
西门子PLC模块 , CPU模块 , DP通讯电缆 , 6GK交换机
西门子低压-模块代理商

在常规自动控制系统中,传感器与执行器是独立接线的,多个传感器和执行器构成的系统需要大量导线。通信总线应用到测控系统中,不仅能节省大量的导线,而且可提高系统的可靠性。已被广泛采用的工业总线一般有两类。一类为主从结构方式,如RS-485通讯,该通讯总线在工业控制中已得到广泛应用,其通讯方式为命令—响应方式。主机定时向各子控制器发出查询信号,再由各子控制器汇报各自状态。这种通讯方式开发难度较小,但通讯实际耗费了主控制器相当一部分资源。所以此种方式并未能完全地发挥出主控制器强大的运算功能。另一类为各节点自主通讯方式,如欧姆龙公司、三菱公司的CAN总线,NEWLIFT公司的LONWORKS总线等。这类总线的可靠性和通讯速率与前一种有着本质的提高,但成本相对较贵。

2 西门子执行器-传感器接口总线AS-Interface
针对现在流行的两类串行总线控制方式的优缺点,西门子吸取了两种控制方式的优点,推出了AS-Interface(远程I/O)总线技术。AS-Interface是执行器-传感器接口总线系统,就是将分散的I/O信号通过从站收集起来,仅用两根信号线传送到AS-I主站。AS-I主站按顺序呼叫,长循环时间为5ms,AS-I从站节点在错误的情况下,具有自动关闭总线的功能,切断它与总线上的联系,使其它从站不受影响,其故障问题可及时在AS-I主站上反映出来。AS-I的每帧信息都有CRC校验及其他检错措施,保证了AS-I总线的高可靠性,AS-I总线直接通讯距离远可达100m,通过中继站延伸的大距离300m,AS-I总线多可安装248个传感器与执行器。
西门子PLC主机与执行器-传感器-接口从站之间的联系通过AS-I主站,无须额外编辑通讯程序,对于工程人员来说远程I/O对应于映像区的对应位,符合他们的编程习惯,十分方便。由于两线通讯的应用,系统连接线采用卡线刺穿式结构,布线量大为减少,且独特的AS-I梯形电缆,杜绝了接线错误的可能性,与以前的PLC控制系统相比可节省大量的电缆,安装工作量亦大为减少。

3 电梯控制系统
电梯控制系统从继电器控制发展到PLC加调速器控制方式,经历了一个相当大的技术飞跃,现有的产品也成型,且性能相当稳定,现有的电梯控制系统基本结构如图1所示。控制中心在楼顶机房,井道和轿厢中的所有信号都以点对点的形式通过大量的电缆传送到控制中心。

   plc控制对象的控制要求多种多样,但是,大多数动作都可以分解为若干基本动作(基本程序功能)的组合。因此,作为plc编程人员,通过日常积累,熟练掌握多种、基本、常用动作的程序编制方法,是提高编程效率与程序可靠性的有效措施。以下是为几种常用的基本动作而设计的典型程序,可供电气自动化技术网的网友参考。
    1.恒“1”与恒“O”信号的生成
    在PLC程序设计时(特别是对功能模块进行编程时),经常需要将某些信号的状态设置为“0”或“1”。因此,大部分长期从事PLC程序设计的人,一般均会在程序的起始位置,首先编入产生恒“0”与恒“1”的程序段,以便在程序中随时使用。
    产生恒“0”与恒“1”的梯形图程序如图9-3.1所示。
PLC梯形图
    图9-3.1 (a)中,MO.O的状态等于信号M0.2的状态与M0.2的“非”信号进行“与”运算的结果,MO.O恒为“O”。
    图9-3.1 (b)中,MO.1的状态等于信号M0.2的状态与M0.2的“非”信号进行“或”运算的结果,MO.1恒为“l”。
    2.自保持信号的生成
    在许多控制场合,有的输出(或内部继电器)需要在某一信号进行“启动”后,一直保持这一状态,直到其他的信号予以“断开”,这就是继电器控制系统中所谓的“自保持”(也称“自锁”或“记忆”)。
    生成“自保持”的程序有两种常用的编程方法,即通过“自锁”的方法与通过“置位”、“复位”指令实现,分别如图9-3.2 (a)、图9-3.3 (a)与图9-3.2 (b)、图9-3.3 (b)所示。
plc梯形图
  “自保持”有“断开优先”(也称“复位忧先”)与“启动优先”(也称“置位优先”)两种控制方式。其区别在于当“启动”、“断开”信号(或“置位”、“复位”信号)同时生效时,其输出状态将有所不同。
    “断开优先”的PLC梯形图程序如图9-3.2所示。
    图9-3.2 (a)采用的是“自锁”的方法,图9-3.2 (b)采用的是“置位”、“复位”的方法。
    图9-3.2中,IO.1为“启动”(“置位”)信号,当IO.1为“1”(常开触点闭合)时,输出QO.1为“l”;I0.2为“断开”(“复位”)信号,当I0.2为“l”(常闭触点断开)时,输出QO.1为“0”。如IO.1、I0.2同时为“1”,QO.1输出为“0”状态,故称为“断开优先”或“复位优先”。
    “启动优先”的PLC梯形图程序如图9-3.3所示。在正常情况下,它与图9-3.2的工作过程相同。但是,如IO.1、I0.2同时为“l”时,QO.1输出为“l”状态,故称为“启动优先”或“置位优先”。
    3.边沿检测信号的生成
    在许多PLC程序中,需要检测某些输入、输出信号的上升或下降的“边沿”信号,以实现特定的控制要求。实现信号边沿检测的典型程序有两种,本章9.2节所述的(参见图9-2.6)是简单的实现程序,此外,还有图9-3.4所示的常用、典型程序。
    图9-3.4所示的边沿检测程序的优点是在生成边沿脉冲的同时,还在内部产生了边沿检测状态“标志”信号MO.1,MO.1为“1”代表有边沿生成。
plc梯形图
    边沿处理可以直接利用PLC的编程指令实现。如S7-200的指令“-|P|-”、“-|N|-”等。
    4.二分频信号的生成
    在PLC控制系统中,经常有需要利用一个按钮的反复使用,交替控制执行元件的通/断的要求,即在输出为“0”时,通过输入可以将输出变成“1”;而在输出为“l”时,通过输入可以将输出变成“0”。
    这一控制要求的信号时序如图9-3.5 (b)所示,图中IO.1为输入控制信号(如按钮等),QO.I为执行元件(如指示灯等)。由于这种控制要求的输入信号动作频率是输出的2倍,故常称为“二分频”控制。

    图9-3.5 (a)为“二分频”控制的PLC程序梯形图。程序可以分为“边沿”信号的生成(图中的Networkl、Network2)、“启动”/“断开”信号的生成(图中的Network3、Network4)、自保持程序(图中的Network5)三部分。
    “边沿”信号的生成、自保持的程序编制与动作过程完全与前述相同:“启动”/“断开”信号是由输入信号的边沿脉冲MO.O与现行输出元件的实际状态QO.1通过“与”运算后得到的。当现行输出QO.1为“0”时,产生“启动”脉冲信号M0.2,将输出QO.1的状态置“1”;当现行输出QO.1为“l”时,产生“断开”脉冲信号M0.3,将输出QO.1状态置“0”。
plc梯形图
    图9-3.5 (a)所示的“二分频”控制程序,动作清晰、理解容易,但占用了MO.O~M0.3共4个内部继电器,在控制要求复杂的设备上大量使用时,可能会导致内部继电器的不足。在这种场合,可以使用图9-3.6 (a)所示的“二分频”控制程序。
    在图9-3.6 (a)中,一个“二分频”控制只占用了1个内部继电器,程序所占的容量也较小,程序的动作时序如图9-3.6 (b)所示。

图1 传统电梯控制系统


传统电梯控制系统由于接线过多,安装复杂,不易更改和扩展,导致难以维护和效率低的缺点。电梯用户对电梯的要求已不仅仅停留在对系统的安全性、可靠性等基本功能的追求上,对电梯的舒适感、效率、自我故障诊断、远程监控等智能化以及电梯调试,维护的简便性提出了更高的要求。所以急需一种高效率,高可靠性的现场总线技术来满足用户的要求,AS-Interface总线技术就是其佳选择。AS-I总线的物理实现为两线通讯,接线采用卡线刺穿式结构,AS-I从站可以十分方便的接入到总线上,且独特的AS-I梯形电缆,杜绝了接线错误的可能性。下面对西门子S7-200CN PLC的AS-Interface总线系统实现电梯控制做一些探讨。

4 AS-Interface总线在电梯控制系统中应用
4.1 硬件实现
具有AS-Interface总线功能的西门子S7-200CN PLC性能较好,功能强大,支持三角函数、开方、对数运算等功能;可在线编辑和监视;通过调制解调器支持远程监控;可以故障诊断,执行单次扫描,强制输出;可以编辑变量状态表,使用多个可同时打开的窗口可同时显示信号状态和状态表。所以基于S7-200CN PLC的电梯控制系统是一个网络化、智能化、性价比极高的控制系统。
在系统的硬件实现上,经过仔细调查和论证发现:电梯控制系统的传感器和执行器基本上集中在井道和轿厢,机房仅只有一个执行器即调速器,而无传感器。所以将机房作为控制中心不尽合理,为了使系统的硬件布置达到优,项目对传统的电梯控制系统做了如下调整:电梯的控制系统和拖动系统从物理上分开,改变了传统电梯系统控制、拖动不分家的状态。这样做的好处是真正实现了强弱电分开,大大提高了系统的抗干扰性,进一步保证了电梯系统的安全和可靠;由于电梯的大部分信号在轿厢和井道,如果将控制中心置于机房,即使应用AS-Interface总线技术,那么它所需要的AS-I从站是十分可观的(以10层10站的电梯为例,轿厢和井道的信号大约有100个,一个AS-I从站的的I/O数多为8,也就是说需13个从站才能满足要求),这种即使有了先进性而无经济性的系统难以被工程所接受。项目的做法就是将控制中心转移到轿厢顶,这种转移在不降低其先进性的同时大大降低了控制系统的成本(同样以10层10站的电梯为例,井道和机房的信号大约有48个,所需要的从站仅为6个)。

图2为根据以上思想采用AS-I总线技术的电梯控制系统,控制中心位于轿顶,由CPU226CN(PLC)、EM223(PLC扩展)、AS-I主站三部分组成,轿厢上的信号均直接接到PLC的I/O上,井道和机房的信号通过AS-I从站传输到AS-I主站上,现场安装十分简单。


发布时间:2023-10-26
展开全文
优质商家推荐 拨打电话